Neural Conversation Generation with Auxiliary Emotional Supervised Models
نویسندگان
چکیده
منابع مشابه
Improving Semi-Supervised Learning with Auxiliary Deep Generative Models
Abstract Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary var...
متن کاملEmotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory
Emotional intelligence is one of the key factors to the success of dialogue systems or conversational agents. In this paper, we propose Emotional Chatting Machine (ECM) which generates responses that are appropriate not only at the content level (relevant and grammatical) but also at the emotion level (consistent emotional expression). To the best of our knowledge, this is the first work that a...
متن کاملFacial Expression Generation from Speaker's Emotional States in Daily Conversation
A framework for generating facial expressions from emotional states in daily conversation is described. It provides a mapping between emotional states and facial expressions, where the former is represented by vectors with psychologically-defined abstract dimensions, and the latter is coded by the Facial Action Coding System. In order to obtain the mapping, parallel data with rated emotional st...
متن کاملAuxiliary Objectives for Neural Error Detection Models
We investigate the utility of different auxiliary objectives and training strategies within a neural sequence labeling approach to error detection in learner writing. Auxiliary costs provide the model with additional linguistic information, allowing it to learn general-purpose compositional features that can then be exploited for other objectives. Our experiments show that a joint learning appr...
متن کاملSemi-Supervised Generation with Cluster-aware Generative Models
Deep generative models trained with large amounts of unlabelled data have proven to be powerful within the domain of unsupervised learning. Many real life data sets contain a small amount of labelled data points, that are typically disregarded when training generative models. We propose the Cluster-aware Generative Model, that uses unlabelled information to infer a latent representation that mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Asian and Low-Resource Language Information Processing
سال: 2020
ISSN: 2375-4699,2375-4702
DOI: 10.1145/3344788